
Computer Science

Efficient Generation of
Counterexamples and Witnesses in

Symbolic Model Checking

E. Clarke 0. Grumberg* K. McMillan* X. Zhao

October 1994

CMU-CS-94-204

0 i it»..
&S\ ELEC i i
K^ DEC 1 Z 1S94| |

td \H.

! r-.
fcifo'-baaS^

Mellon
- .-■'.■ ■.'„"•■TT-r' n

'v.!':.lic roiease;

19941202 040
- » A-Liil^i.' i^ ":n ?

Efficient Generation of
Counterexamples and Witnesses in

Symbolic Model Checking
E. Clarke 0. Grumberg* K. McMillan* X. Zhao

October 1994

CMU-CS-94-204

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

* Computer Science Department
The Technion

Haifa, 32000 Isreal

f Cadence Berkeley Laboratories
1919 Addison Street, Ste. 303

Berkeley, CA, 94704-1144

This research was sponsored in part by the National Science Foundation under Grant No. CCR-9217549,
by the Semiconductor Research Corporation under Contract No. 94-DJ-294, and by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research Projects
Agency (ARPA) under Grant No. F33615-93-1-1330. The US Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright notation thereon.

Views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of Wright Laboratory or the United States
Government.

Keywords: automatic verification, temporal logic, model checking, binary decision
diagrams, counterexamples

Abstract

Model checking is an automatic technique for verifying sequential circuit designs and pro-
tocols. An efficient search procedure is used to determine whether or not the specification
is satisfied. If it is not satisfied, our technique will produce a counterexample execution
trace that shows the cause of the problem. Although finding counterexamples is extremely
important, there is no description of how to do this in the literature on model checking. We
describe an efficient algorithm to produce counterexamples and witnesses for symbolic model
checking algorithms. This algorithm is used in the SMV model checker and works quite well
in practice. We also discuss how to extend our technique to more complicated specifications.
This extension makes it possible to find counterexamples for verification procedures based
on showing language containment between various types of cj-automata.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification _

D

By
Distribution /

Availability Codes

Dist

m.

Avail and/or
Special

1. Introduction

Complex state-transition systems occur frequently in the design of sequential circuits and
protocols. During the past ten years, researchers at Carnegie Mellon University have devel-
oped an alternative approach to verification called temporal logic model checking [5, 6]. In
this approach specifications are expressed in a propositional temporal logic, and circuit de-
signs and protocols are modeled as state-transition systems. An efficient search procedure is
used to determine automatically if the specifications are satisfied by the transition systems.

One of the most important advantages of model checking over mechanical theorem provers
or proof checkers for verification of circuits and protocols is its counterexample facility.
Typically, the user provides a high level representation of the model and the specification to
be checked. The model checking algorithm either terminates with the answer true, indicating
that the model satisfies the specification, or gives a counterexample execution that shows
why the formula is not satisfied. The counterexamples can be essential in finding subtle

errors in complex designs.

The main disadvantage of model checking is the state explosion which can occur if the sys-
tem being verified has many components that can make transitions in parallel. Recently, the
size of the transition systems that can be verified by model checking techniques has increased
dramatically after the introduction of ordered binary decision diagrams (OBDDs) [2]. By
applying this technique, verification of systems that have more than 10100 states has become
possible [3, 11]. However, finding counterexamples is significantly more difficult when OB-
DDs are used in model checking instead of explicit state enumeration techniques, especially
when fairness constraints are involved.

Although finding counterexamples is extremely important, as far as we know, there is no
description of how to do this in the literature on model checking. In this paper, we describe an
efficient algorithm to produce counterexamples and witnesses for model checking algorithms.
The algorithm is, in fact, the one that is used in the SMV model checker developed at
Carnegie Mellon [11] and works quite well in practice. We show how the counterexample
facility can be used to debug a subtle asynchronous circuit design. We also discuss how
to extend our technique to more complicated temporal formulas. This extension makes
it possible to find counterexamples for verification procedures based on showing language
containment between various types of u>-automata.

This paper is organized as follows: The properties of OBDDs that we need are briefly
discussed in Section 2. The next section describes the temporal logic CTL that we use for
specifying properties of sequential circuits and protocols. Section 4 explains the symbolic
model checking algorithm for CTL, and Section 5 shows how fairness constraints can be
handled. Section 6 is the main section of the paper. We describe how counterexamples
and witnesses are generated. We also give an example that shows how this facility can be
used in sequential circuit verification. In the next section we extend the counterexample
facility to a wider class of temporal properties. Section 8 describes how our techniques can
be used to generate counterexamples for verification procedures that are based on showing
inclusion between cj-automata. The paper concludes in Section 9 with a discussion of possible

directions for future research.

2. Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are a canonical form representation for boolean
formulas [2]. They are often substantially more compact than traditional normal forms such
as conjunctive normal form and disjunctive normal form, and they can be manipulated very
efficiently. An OBDD is similar to a binary decision tree, but has the following properties:

• Its structure is a directed acyclic graph rather than a tree.

• Variables occur in the same order on every path from root to leaf.

• No two subgraphs in the graph represent the same function.

For a given variable ordering, the OBDD representation of a boolean formula is unique [2].

We can perform most logical operations efficiently using OBDDs. The function that
restricts some argument X{ of a boolean function / to a constant value 6, denoted by / |r,_6,
can be performed in time linear in the size of the original OBDD [2]. The restriction
algorithm allows us to compute the OBDD for the formula 3xf as / \X^Q V/ |r^i. All
16 two-argument logical operations can be implemented efficiently on boolean functions
that are represented as OBDDs. The complexity of these operations is linear in the size of
the argument OBDDs [2]. Moreover, equivalence of two boolean functions can be decided in
constant time [1].

OBDDs are used in this paper for obtaining concise representations of relations over finite
domains [3]. If R is n-ary relation over {0,1} then R can be represented by the OBDD of
its characteristic function

fR(xu..., xn) = 1 iff R(xi,. . .,.rn).

If R is an n-ary relation over the finite domain D with \D\ > 2, R can still be represented
as an OBDD if an appropriate binary encoding is used for D.

3. The temporal logic CTL

The logic that we use to specify circuits is a propositional temporal logic of branching time.
called CTL or Computation Tree Logic [6]. In this logic each of the usual forward-time
operators of linear temporal logic (G globally or invariantly. F sometime in the future. X
nexttime and U until) must be directly preceded by a path quantifier. The path quantifier
can either be an A (for all computation paths) or an E (for some computation path). Thus,
some typical CTL formulas are AG/, which holds in a state provided that / holds globally
along all possible computation paths starting from that state, and EF/, which holds in a
state provided that there is a computation path such that / holds in the future on the path.

In order to explain our verification procedure, it is convenient to express the CTL opera-
tors with universal path quantifiers in terms of the operators with existential path quantifiers,
taking advantage of the duality between universal and existential quantification. Conse-
quently, in our description of the syntax and semantics of CTL, we specify the existential

path quantifiers directly and treat the universal path quantifiers as syntactic abbreviations.

Let P be the set of atomic propositions, then:

1. Every atomic proposition p in P is a formula in CTL.

2. If / and g are CTL formulas, then so are -./, fVg, EX/, E[/ U g] and EG /.

The semantics of a CTL formula is defined with respect to a labeled state-transition
graph. A labeled state-transition graph is a 5-tuple M = (AP,S,L, N, S9) where AP is a
set of atomic propositions, S is a finite set of states, I is a function labeling each state with
a set of atomic propositions, N C S x S is a transition relation, and So is a set of initial
states. A computation path is an infinite sequence of states s0,si,s2,... such that N(si,si+i)

is true for every i.

The propositional connectives -> and V have their usual meanings of negation and disjunc-
tion. The other propositional operators can be defined in terms of these. X is the nexttime
operator: EX / will be true in a state s of M if and only if s has a successor s' such that
/ is true at s'. U is the until operator: E[/Uj] will be true in a state s of M if and only
if there exists a computation path starting in s and an initial prefix of the path such that
g holds at the last state of the prefix and / holds at all other states along the prefix. The
operator G is used to express the invariance of some property over time: EG / will be true
at a state s if there is a path starting at s such that / holds at each state on the path. If/is
true in state s of structure M, we write M, s |= /. A CTL formula / is identified with the
set {s|M,s |= /} of states that make / true. We use the following syntactic abbreviations

for CTL formulas:

• AX / = -• EX -■/ which means that / holds at all successor states of the current state

(/ must hold at the next state).

• EF/ = E[trueUf] which means that for some path, there exists a state on the path

at which / holds (/ is possible in the future).

• AF / = -> EG -•/ which means that for every path, there exists a state on the path at
which / holds (/ is inevitable in the future).

• AG/ = -IEF-I/ which means that for every path, / holds in each state on the path

(/ holds globally along all paths).

• A[/ U g] = -iE[->g U ->/ A ->g] A -<EG-ig which means that for every path, there
exists an initial prefix of the path such that g holds at the last state of the prefix and
/ holds at all other states along the prefix (/ holds until g holds, along all paths).

4. Symbolic Model Checking

Model checking is the problem of finding the set of states in a state-transition graph where a
given CTL formula is true. There is a program called EMC (Extended Model Checker) that
solves this problem using efficient graph-traversal techniques. If the model is represented as

3

a state-transition graph, the complexity of the algorithm is linear in the size of the graph
and in the length of the formula. The algorithm is quite fast in practice [5, 6]. However, an
explosion in the size of the model may occur when the state-transition graph is extracted
from a finite state concurrent system that has many processes or components.

In this section, we describe a symbolic model checking algorithm for CTL which uses
OBDDs to represent the state-transition graph. Assume that the behavior of the concurrent
system is determined by n boolean state variables V\,v2,..., vn. The transition relation
R(v, v') for the concurrent system is given as a boolean formula in terms of two copies of
the state variables: v = (vi,... ,vn) which represents the current state and v' = (v[,... ,v'n)
which represents the next state. The formula R(v,v') is now converted to an OBDD. This
usually results in a very concise representation of the transition relation.

Our model checking algorithm is based on the standard fixpoint characterizations of the
basic CTL operators. A fixpoint of T : 2s —* 2s is a set 5'' C S such that T(S') = ,$''. If r
is monotonic, it has a fixpoint So that is a subset of every other fixpoint of r. ,S'o is called
the least fixpoint of r and is denoted by lfp / [r(/)]. The greatest fixpoint of r, gfp / [r(/)],
can be defined similarly as the fixpoint of r that is a superset of all other fixpoints. It can
be shown that the least fixpoint lfp/ [r(/)] is the limit of the sequence of approximations

False, r(False), r2(False),..., r'(False),...

and the greatest fixpoint gfp/ [r(/)] is the limit of the sequence of approximations

True, r(True), r2(True),..., r'(True),...

When the state-transition graph is finite, both of these sequences are guaranteed to converge
in a finite number of steps.

Each of the basic CTL operators can be characterized as a least or greatest fixpoint of
some functional r : 25 —► 25. In particular, it is shown in [5] that

• E[/ U g] = lfp Z [g V (/ A EX Z)\, and

• EG/ = gfpZ[/AEXZ].

The symbolic model checking algorithm is implemented by a procedure Check that takes
the CTL formula to be checked as its argument and returns an OBDD that represents exactly
those states of the system that satisfy the formula. Of course, the output of Check depends
on the system being checked; this parameter is implicit in the discussion below. We define
Check inductively over the structure of CTL formulas. If / is an atomic proposition i\, then
Check(f) is simply the OBDD for vt. Formulas of the form EX/, E[/U#], and EG/ art-
handled by the procedures:

Check{EXf) = CheckEX{Check(f)),
Check(E[fVg]) = CheckEU{Check{f), Check{g)),
Check{EGf) = CheckEG{Check{f)).

Notice that these intermediate procedures take boolean formulas as their arguments, while
Check takes a CTL formula as its argument. CTL formulas of the form / V g or ->f are

handled using the standard algorithms for computing boolean connectives with OBDDs.
Since AX/, A[/ U g] and AG / can all be rewritten using just the above operators, this

definition of Check covers all CTL formulas.

The procedure for CheckEX is straightforward since the formula EX / is true in a state

if the state has a successor in which / is true.

CheckEX (f(v)) = 3v' [f(v') A R(v,v%

If we have OBDDs for / and R, then we can compute an OBDD for

3v'[f(v')AR(v,v')].

using the BDD operations given in Section 2.

The procedure for CheckEU is based on the least fixpoint characterization for the CTL

operator EU.

CheckEU (f(v),g{v)) = lfpZ(ü) [g{v) V {f(v) A CheckEX(Z(v)))].

In this case we can compute the sequence of approximations

QQI Qli • • ■ i Qii • ■ •

for the least fixpoint as described above. If we have OBDDs for /, g, and the current
approximation Qi, then we can compute an OBDD for the next approximation Ql+i. Since
OBDDs provide a canonical form of boolean functions, it is easy to test for convergence by
comparing consecutive approximations. When Qi = Qi+U this process terminates. The set
of states corresponding to E[/ U g] will be represented by the OBDD for Qi.

CheckEG is similar. In this case the procedure is based on the greatest fixpont charac-

terization for the CTL operator EG

CheckEG{f{v)) = gfpZ(ü) [/(CO A CheckEX {Z(v))}.

If the OBDD for / is given, then the sequence of approximations for the greatest fixpoint
can be used to compute the OBDD representation for the set of states that satisfy EG/.

5. Fairness Constraints

Next, we consider the issue of fairness. In many cases, we are only interested in the correct-
ness along fair computation paths. For example, if we are verifying an asynchronous circuit
with an arbiter, we may wish to consider only those executions in which the arbiter does not
ignore one of its request inputs forever. This type of property cannot be expressed directly
in CTL. In order to handle such properties we must modify the semantics of CTL slightly.
A fairness constraint can be an arbitrary set of states, usually described by a formula of
the logic. A path is said to be fair with respect to a set of fairness constraints if each
constraint holds infinitely often along the path. The path quantifiers in CTL formulas are
then restricted to fair paths. In the remainder of this section we describe how to modify

the algorithm above to handle fairness constraints. We assume the fairness constraints are
given by a set of CTL formulas H = {hi,..., hn}. We define a new procedure CheckFair
for checking CTL formulas relative to the fairness constraints in H. We do this by giving
definitions for new intermediate procedures CheckFairEX, CheckFairEU, and CheckFairEG
which correspond to the intermediate procedures used to define Check.

Consider the formula EG/ given fairness constraints H. The formula means that there
exists a path beginning with the current state on which / holds globally (invariantly) and
each formula in H holds infinitely often on the path. The set of such states 5' is the largest
set with the following two properties:

1. all of the states in S satisfy /, and

2. for all fairness constraints h^ € H and all states 5 £ 5', there is a sequence of states of
length one or greater from s to a state in 5' satisfying h^ such that all states on the
path satisfy /.

It is easy to show that if these conditions hold, each state in the set is the beginning of an
infinite computation path on which / is always true, and for which every formula in II holds
infinitely often. Thus, the procedure CheckFairEG(f{v)) will compute the greatest fixpoint

n

gfp Z(v) [f(v) A f\ CheckEX(CheckEU(f(v), Z(v) A Check{hk)))}.

The fixed point can be evaluated in the same manner as before. The main difference is that
each time the above expression is evaluated, several nested fixed point computations are
done (inside CheckEU).

Checking EX/ and E[/ U g] under fairness constraints is simpler. The set of all states
which are the start of some fair computation is

fair(v) = CheckFair(EG True).

The formula EX/ is true under fairness constraints in a state .s if and only if there is a
successor state .s' such that s' satisfies / and s' is at the beginning of some fair computation
path. It follows that the formula EX/ (under fairness constraints) is equivalent to the
formula EX(/A fair) (without fairness constraints). Therefore, we define

CheckFairEX {f{v)) = CheckEX{f{v) A fair{n)).

Similarly, the formula E[/ U g] (under fairness constraints) is equivalent to the formula
E[/U (g A fair)] (without fairness constraints). Hence, we define

CheckFairEU(f{v),g{v)) = CheckEU{f{v),g(v) A fair(v)).

6. Counterexamples and Witnesses

One of the most important features of CTL model checking algorithms is the ability to
find counterexamples and witnesses. When this feature is enabled and the model checker

6

determines that a formula with a universal path quantifier is false, it will find a computation
path which demonstrates that the negation of the formula is true. Likewise, when the model
checker determines that a formula with an existential path quantifier is true, it will find a
computation path that demonstrates why the formula is true. For example, if the model
checker discovers that the formula AG / is false, it will produce a path to a state in which
->f holds. Similarly, if it discovers that the formula EF / is true, it will produce a path to
a state in which / holds. Note that the counterexample for a universally quantified formula
is the witness for the dual existentially quantified formula. By exploiting this observation
we can restrict our discussion of this feature to finding witnesses for the three basic CTL

operators EX, EG, and EU.

We start by considering the complexity of finding a good witness for the formula EG /
under the set of fairness constraints H = {hu..., hn). We will identify each hz with the
set of states that make it true. Given a state s satisfying EG /, we must exhibit a path
7T starting with s, such that / holds at each state, and every fairness constraint h G H is
satisfied infinitely often along the path TT. Since the witness is an infinite path, we must find
a finite representation for it. It is easy to see that a witness can always be found that consists
of a finite prefix followed by a repeating cycle. Each fairness constraint hi is satisfied at least
once on the cycle. Such a path is called a finite witness. The length of a finite witness is
defined as the total length of the prefix and the cycle. It is desirable to find a finite witness
with minimal length; however, this problem is NP-complete.

Theorem 1 // fairness constraints are permitted, finding a finite 'witness with minimal

length for the formula EG True is NP-complete.

Proof: It is relatively easy to see that this problem in NP. The prefix of a minimal finite
witness cannot contain a cycle, so its length is bounded by the number of states. The cycle
of a minimal finite witness can be decomposed into several simple cycles. Each simple cycle
must contain a state that satisfies a fairness constraint that does not hold in any other simple
cycle. Otherwise, we can eliminate this simple cycle from the witness. The length of the
complete cycle is therefore bounded by the product of the number of fairness constraints
and the number of states. Consequently, it is possible to guess a prefix and cycle and check
to see whether they constitute a minimal finite witness in polynomial time in the size ot the

graph.

Finding a Hamiltonian cycle for a directed graph is known to be an NP-complete problem.
Thus, it is sufficient to prove that the Hamiltonian cycle problem can be reduced to the
minimal finite witness problem. Consider an instance of the Hamiltonian cycle problem for
a directed graph with n nodes. This graph is treated as a state-transition graph and the
set of fairness constraints H = {hr,..., hn] is selected so that each state satisfies a distinct
fairness constraint. On any finite witness, each state must appear at least once on the cycle;
hence, the length of the finite witness must be at least n. The length of the minimal finite
witness is'n if and only if the n states on the path form a Hamiltonian cycle. Thus, the
Hamiltonian cycle problem reduces to finding a minimal finite witness and checking if this
path has length n. This reduction can be performed in polynomial time. Consequently, the

minimal finite witness problem is also NP-complete. □

7

Although we are unable to find the minimal finite witness easily, we still want to obtain
a finite witness that is as short as possible. In order to accomplish this task, we will need to
examine the strongly connected components of the transition graph determined by the Kripke
structure. We will say that two states st and s2 are equivalent if there is a path from Si to s2

and also from s2 to S\. We will call the equivalence classes of this relation strongly connected
components. We can form a new graph in which the nodes are the strongly connected
components and there is an edge from one strongly connected component to another if and
only if there is an edge from a state in one to a state in the other. It is easy to see that the
new graph does not contain any proper cycles, i.e., each cycle in the graph is contained in
one of the strongly connected components. Moreover, since we only consider finite Kripke
structures, each infinite path must have a suffix that is entirely contained within a strongly
connected component of the transition graph.

Recall that the set of states that satisfy the formula EG/ with the fairness constraints
H is given by the formula

gfpZ[/A /\EX(E[/UZ A/>,])] (1)
k=l

For brevity, we will use EG / to denote the set of states that satisfy EG / under the fairness
constraints H. We construct the witness path incrementally by giving a sequence of prefixes
of the path of increasing length until a cycle is found. At each step in the construction we
must ensure that the current prefix can be extended to a fair path along which each state
satisfies /. This invariant is guaranteed by making sure that each time we add a state to
the current prefix, the state satisfies EG/.

First, we evaluate the above fixpoint formula. In every iteration of the outer fixpoint
computation, we compute a collection of least fixpoints associated with the formulas E[/ U
Z A /i], for each fairness constraint h € //. For every constraint li, we obtain an increasing
sequence of approximations QQ, Q^Q^,..., where Q^ is the set of states from which a state
in Z A h can be reached in i or fewer steps, while satisfying /. In the last iteration of the
outer fixpoint when Z = EG/, we save the sequence of approximations Qh for each h in //.

Now, suppose we are given an initial state s satisfying EG/. Then .s belongs to the set
of states computed in equation (1), so it must have a successor in E[/ U (EG/) A h] for
each h 6 H. In order to minimize the length of the witness path, we choose the first fairness
constraint that can be reached from .s. This is accomplished by testing the saved sets Q1- for
increasing values of i until one is found that contains some successor t of s. Note that since
t G Qf, it has a path to a state in (EG/) A h and therefore / is in EG/. If /' > 0, we find a
successor of t in Q{_\- This is done by finding the set of successors of /, intersecting it with
Qi-n ana" then choosing an arbitrary element of the resulting set. Continuing until /' = 0, we
obtain a path from the initial state 5 to some state in (EG/) A h. We then eliminate h from
further consideration, and repeat the above procedure until all of the fairness constraints
have been visited. Let s' be the final state of the path obtained thus far.

To complete a cycle, we need a non-trivial path from s' to the state / along which each
state satisfies /. In other words, we need a witness for the formula {.s'} A EXE[/U {/}]. If
this formula is true, we have found the witness path for 5. This case is illustrated in Figure
1. If the formula is false, there are several possible strategies. The simplest is to restart the

8

o
sec

Ö:

Figure 1: Witness is in first strongly connected component

procedure from the final state s'. Since {s'} A EXE[/U{i}] is false, we know that s' is not
in the strongly connected component of / containing t, however s' is in EG/. Thus, if we
continue this strategy, we must descend in the directed acyclic graph of strongly connected
components, eventually either finding a cycle IT, or reaching a terminal strongly connected
component of /. In the latter case, we are guaranteed to find a cycle, since we cannot exit
a terminal strongly connected component. This case is illustrated in Figure 2.

A slightly more sophisticated approach would be to precompute E[(EG/) U {t}]. The
first time we exit this set, we know the cycle cannot be completed, so we restart from that
state. Heuristically, these approaches tend to find short counterexamples (probably because
the number of strongly connected components tends to be small), so no attempt is made to

find the shortest cycle.

The witness procedure for EG/ under fairness constraints H can be used to extend
witnesses for E[/ U g] and EX/ to infinite fair paths. Let fair be the set of states that
satisfy EG True under the fairness constraints H. We can compute E[/U </] under H by
using the standard CTL model checking algorithm (without fairness constraints) to compute
E[/ U (g A fair)]. Similarly, We can compute EX/ by using the standard CTL model

checking algorithm to compute EX(/ A fair).

In order to test the procedure for finding counterexamples when fairness constraints are
used, we have examined an error in an arbiter design originally developed by Seitz [12]. The
circuit is shown in Figure 3; it is designed to be speed independent, which means that each
gate can take an arbitrarily long time to respond to its inputs. Fairness constraints are used

to ensure that every gate eventually responds.

An attempt was made to verify the circuit using an explicit state model checker [7].
However, the attempt failed because the number of states was too large. In order to complete
the verification, one of the input devices had to be disabled. By using symbolic model
checking techniques, we are able to verify the original circuit without using any simplifying

sec.

sec 2...-

SCC. a

Figure 2: Witness spans three strongly connected components

TRI TA1

UAI
Cl

IIRI

URI

UR2

•0-1

•0-

SR

—=»■

C2

TR2 TA:

Figure 3: An asynchronous arbiter

assumptions. The model contains 33,633 reachable states, and the entire verification takes

only a few minutes.

We have verified several liveness properties which require that each request signal in-
evitably leads to an acknowledgement signal. Such properties can be easily represented by
CTL formulas with the form AG(r -» AFa), where r represents a request and a represents
an acknowledgment. An error was discovered when the specification AG(irl —>■ AF tal)
was checked. The algorithm given earlier in this section found a counterexample that was
seventy eight states long and had a cycle with length thirty. The counterexample showed
that the following execution sequence was possible. The circuit could reach a state where
every node was low except meol if the ME element took a long time to respond. When
url was issued, trl, tal, sr, sa and ual became true consecutively. Because of the long
delay of the 0R1 gate, meil remained low. Eventually, the ME element responded to its
inputs and set meol low. This caused trl and tal to become low. Next, 0R1 responded
and meil became high. Then, the ME element and the AND1 gate caused trl to become
high again while tal continued to be low. In this state, the formula trl —*■ AF tal was false.
Since ual was already high, url could become low. This caused trl to become low. The
counterexample showed that url was always low. Therefore, tal remained low as well. A
correction for the error was proposed in [7], but will not be discussed here.

7. Counterexamples and Witnesses for CTL* Formulas

In the previous sections, we described how to perform model checking and find counterexam-
ples or witnesses for CTL formulas. However, some temporal properties that are important
for reasoning about sequential circuit designs and protocols cannot be expressed by CTL for-
mulas. In these cases, an extension of CTL, called CTL*, is often used. There are two types
of formulas in CTL*: state formulas (which are true in a specific state) and path formulas
(which are true along a specific path). As before, let AP be the set of atomic propositions.
The syntax of state formulas is given by the following rules:

• If p € AP, then p is a state formula.

• If / and g are state formulas, then ->/ and / V g are state formulas.

• If / is a path formula, then E(/) is a state formula.

Two additional rules are needed to specify the syntax of path formulas:

• If / is a state formula, then / is also a path formula.

• If / and g are path formulas, then ->/, / V g, X/, and / U g are path formulas.

CTL* is the set of state formulas generated by the above rules. The logical connectives -i
and V have their usual meaning. The formula E(/) is true in a state when there exists a
path from the state such that / holds along the path. Let TT = .s0, su ... be a path. We use
IT* to denote the suffix of it starting at s,-. A state formula holds along TT when it is true in

11

the first state So- X/ holds along it when / holds along IT
1
 . Finally, the formula f\Jg holds

along TC when there exists a k > 0 such that g holds on ivk and / holds along every irJ where
0 < j < k. The following abbreviations are used in writing CTL* formulas:

./A<7 = -(-/V-<7) •Ff = trueUf
• A(/) = -E(-/) .G/ = -F-/

In general, model checking is very expensive for CTL* formulas. However, for a large
class of formulas which have the form E V"=i /\%i(GF ptJ V FG qtJ■), efficient model checking
algorithms exist [8]. Because

E v A(GF^ vFG%) = VE }\(GFPuvFG^)5
i=i i=i 1=1 j=i

it is sufficient to check formulas having the form EAJ=I(GFPJ V FGr/j). A fixed point
characterization for these formulas is given in [8]

n n

E /\(GFPj V FG9j) = EFgfpy[/\((9j A EXV) V EXE[V'U(pj A V')])].
i=i j=o

By performing a computation that is similar to the one described in Section 5, we are able
to check the restricted class of CTL* formulas mentioned above. The problem of finding
witnesses for these formulas is more complicated. Suppose that we want find a witness for
so \= EA"=i(GFpj V FGqj). It is easy to see that

E/\(GFPiVFG9i)

n-l

= E /\(GFPjVFG9j)A(GF/)„VFGr/n)

= [E/\(GFPjVFGgj)AGF/)nj V (E /\ (GFPj V FG <Ll) A FG qn j .

Consequently, if s0 f= E A"=/(GFpj V FG^) A FG(/„, it is sufficient to find a witness for
this formula; otherwise, a witness must exist for EAj=i'(GFPj V FG</,) A GF/>„. If we
continue this process for the remainder of the formula, we will eventually obtain a formula
which has the form E FG qh A . .. A FG qik A GF pJl A . . . A GF pjn_k. Because

E(FG f/.-.A.. .AFG qik AGFpj, A... AGF/>jn_J = EF EG(f/„A...A^AF/jjlA... AF/>,„_,).

this formula is true if and only if the CTL formula EG(r/M A ... A qlk) is true under the
fairness constraints pjl,..., Pjn_k. A witness can be computed in exactly the same manner
as in the last section.

8. Counterexamples for Language Containment Problems

An alternative technique for verifying finite-state systems is based on showing language in-
clusion between finite u;-automata [9, 10, 13]. We model the system to be verified by an
w-automaton Ksys. The specification to be checked is given by a second w-automaton Kspec.
The system will satisfy its specification if the language accepted by Ksys is contained in
the language accepted by Kspec, i.e. C(Ksys) C £{Kspec)- In this section we show how the
techniques described in last section can be used to find counterexamples for language con-
tainment problems. Although there are many types of u;-automata, in this paper we only
consider Streett automata. These automata are particularly useful for modeling systems
with complicated fairness constraints that cannot be handled using the technique described
in Section 5. Counterexamples for other types of u;-automata can be determined in a similar
manner by using results from [4]. In general, checking language inclusion between two non-
deterministic w-automata is PSPACE-hard. For this reason we require that the specification
automaton be deterministic. We require that both automata be complete.

A (nondeterministic) w-automaton is a 5-tuple K = (S, s0, E, A,F), where

• S is a finite set of states

• So G S is the initial state

• S is a finite alphabet

• AC.S'xSxS'is the transition relation

• F is the acceptance condition.

The automaton is deterministic if for all states s,tut2 G S and input symbols a G S,
if (s,a,ti) and (s,cr,t2) are two transitions in A, then tx = t2. The automaton is complete
if for every state s G S and for every symbol a G S, there is a state s' G S such that
(s,a,s') G A. An infinite sequence of states s0sts2... G S" is a run of an ^-automaton if
there exists an infinite sequence a0o-ia2 ... G S" such that Vi > 0, {si,<Ti, s,-+i) G A. The
infinitary set of a sequence s0s1s2 ... G Sw, denoted by inf(s0si • • •), is the set of all the states
that appear infinitely many times in the sequence. The Streett acceptance condition has the
form F = {(UUVL), ..., {Un, Vn)}, where £/,-, Vt C S. A sequence a0axa2... G S" is accepted
by a Streett automaton if there is a corresponding run s0sv$2 ... G Sw with the property
that for every i G {1,... ,n}, inf(r) C U{ or inf(r) f~l Vt ^ 0. The set of sequences accepted
by an automaton M is called the language of M and is denoted by C(M).

Let K = (5,s0,S,A,F), K' = (S',s'0, S, A', F') be a pair of Streett automata over the
same alphabet. It is shown in [4] that the path formula <f)F expresses the acceptance condition

of K:
<j>F= f\ (FG(Vs)VGF(V*)),

{u,v)eF seu s&v

and that -><^F' expresses the negation of the acceptance condition for K':

^F,= V (GF(V ^)AFG(V_^))
(V',v')£F> seTF sev

13

Let M(K,K') = (S x 5", (so,-Sg),£,7£) be a state-transition system such that C(s,s') =
{s,s'} and (s,s')TZ(t,t') <& (3a G E : (s,<M) G A and (s',a,0 G A). If K is a nondeter-
ministic Streett automaton and K' is a deterministic Streett automaton, then

C(K) C £(/C) ^ M{K,K') (= -E(</>F A -^)

where </>F and -^F'
are the formulas given above. Note that the above equivalence does not

hold if K' is a nondeterministic automaton. The formula E(</>p A ->^F') is equivalent to

(A (FG(Vs)VGF(Vs)))A| V (GF(V*)AFG(V*))1
\(u,v)eF stu sev) \(U',v)eF' seTJ7 sep^ /

A (FG(Vs)VGF(V*))]AGF(V ^)AFG(V *))•

This formula is an instance of the CTL* formulas discussed in last section. Thus, the
technique given in last section for finding witnesses can be used to find a counterexample
when C(K) is not contained in C(K'). Counterexamples for the language inclusion problems
of Büchi, Muller, Rabin, and L automata can be found in essentially the same way.

9. Directions for Future Research

In this paper, we have described an efficient technique for generating counterexamples and
witnesses for symbolic model checking algorithms. However, when the number of reachable
states is very large, the counterexample can still be very long. Techniques for generating
even shorter counterexamples will make symbolic model checking more useful in practice.

Finding a counterexample can sometimes take most of the execution time required for
model checking. Additional research is needed to develop more efficient algorithms. This is
particularly important because the model checking algorithm may need to be invoked several
times in order to find the witness for a CTL* formula.

Another problem with the counterexample generated by the model checker is that it is
sometimes hard to read. A more readable form will be helpful to engineers who are not
familiar with model checking.

References

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. In Proceedings of the 27th ACM/IEEE Design Automation Conference. IEEE
Computer Society Press, June 1990.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8), 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2): 142 -170,
June 1992.

14

[4] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing lan-
guage containment and equivalence between various types of u>-automata. In A. Arnold
and N. D. Jones, editors, Proceedings of the 15th Colloquium on Trees in Algebra and
Programming, volume 407 of Lecture Notes in Computer Science. Springer-Verlag, May

1990.

[5] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May
1981, volume 131 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8(2):244-263, 1986.

[7] D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings, Part E 133(5), 1986.

[8] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proceedings of the First Annual Symposium on Logic in Computer
Science. IEEE Computer Society Press, June 1986.

[9] Z. Har'El and R. P. Kurshan. Software for analytical development of communications
protocols. AT&T Technical Journal, 69(l):45-59, Jan.-Feb. 1990.

[10] R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop on Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, volume 430 of
Lecture Notes in Computer Science. Springer-Verlag, May 1989.

[11] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Prob-
lem. PhD thesis, Carnegie Mellon University, 1992.

[12] C. L. Seitz. Ideas about arbiters. Lambda, 10(4), 1980.

[13] H. J. Touati, R. K. Brayton, and R. P. Kurshan. Testing language containment for u>-
automata using BDD's. In Proceedings of the 1991 International Workshop on Formal

Methods in VLSI Design, January 1991.

15

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate a-c Cameg e f.'el o- U'wcs ty .s reaured not to
discriminate in admission, employment or admr: st-ation of US programs on the bass of race cob'
national origin, sex or handicap in violation of ntlo VI o' the C:v ■• Rights Ac: os 1964 Title IX of the
Educational Amendments of I972 and Sect,on 504 m the Rehaoi tation Ac: oi '973 or ot"er federal
state or local laws, or executive orders

In addition, Carnegie Mellon University does not d sc m nate n aom.ss on employment or adminis-
tration of its programs on the basis of religon, creep ancestry oel ef, age, veteran status, sexua:
orientation or in violation of federal, state or local la.vs or executive o'ders

Inquiries concerning application of these statements should be drected to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsbu'gr PA 15213, telephone (412) 268-6684 or the Vice
President for Enrollment, Carnegie Mellon University. 5000 Fo'Des Avenge Pittsburgh PA 15213
telephone (412)268-2056

